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The discussion of supervenience is replete with the use of infinitary logical operations. For

instance, one may often find a supervenient property that corresponds to an infinite

collection of supervenience-base properties, and then ask about the infinite disjunction of all

those base properties. This is crucial to a well-known argument of Kim (1984) that

supervenience comes nearer to reduction than many non-reductive physicalists suppose. It

also appears in recent discussions such as Jackson (1998).

Some philosophers have been troubled simply by the infinity of such a disjunction.

Logicians tend to react somewhat differently. Infinitary logical operations have been studies

in depth by the highly developed field of infinitary logic, and many of their properties are

well-understood. On the other hand, as anyone who has ever worked with infinitary logic

knows, it has proved difficult, messy, and filled with surprising pitfalls. Moreover, there are

lots of different infinitary logics, displaying different characteristics, some better, some

worse. Logicians are not likely to object to infinitary operations per se, but they are likely to

ask whether their application to a metaphysical issue like supervenience work as smoothly as

it is sometimes assumed.

In this paper, I shall investigate the interaction between supervenience and infinitary logic.

Supervenience has long been a point of contact between logic and metaphysics. In examining

it, some philosophers have already questioned the metaphysical status of certain finitary

logical operations. I shall show here that the step to infinitary logical operations raises

significant metaphysical issues of its own. This step, I shall argue, is not an all-or-nothing

deal. If we accept the use of infinitary logical operations, we still face hard choices about the

strength of such operations to allow. This in turn forces us to confront difficult metaphysical
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questions about what to count as a property of a given class. In this respect, I shall argue, the

step to infinitary operations leads to more complex and far-reaching versions of problems we

encountered with finitary operations. The step to the infinitary is by no means banal, even for

those who take the finitary logical operations for granted. I shall go on to argue that when we

look at the underlying source of these problems, we can in fact see that the step to the

infinitary raises some special metaphysical problems of its own, different from those that

appear with its finitary counterpart. In particular, it raises a fundamental question about

what counts as the complete physical state of the universe.

The arguments of this paper are divided into five sections. Section (1) sets up the

framework for the application of infinitary logic to issues of supervenience. Section (2)

provides an number of examples of surprising and unwelcome consequences of the

unrestricted use of infinitary logic. These provide good reason to look for ways to restrict it

somehow. In Section (3), a diagnosis is offered of the source of the problems raised in Section

(2). This leads to a discussion of how infinitary logic may be appropriately restricted in

Section (4). Once we see how to restrict infinitary logic, we will see that choosing among

restrictions leads to serious metaphysical questions. The ones that appear in Section (4) are

refined and extended versions of problems that have appeared with respect to finitary logic.

In section (5), I show that considering infinitary logic leads to a puzzle about the complete

physical state of the universe. This provides a metaphysical issue raised by infinitary logic

that does not have an analog in the finitary.

1. Preliminaries: Supervenience, Closure, and Infinitary Logic

Supervenience relations are relations between classes of properties. A supervenience relation

holds between a class of propertiesA, the supervening class, and a class of properties B, the
base class, if whenever there is sameness of B-properties, there must be sameness of
A-properties.1

This is not a definition, but a general scheme into which many different definitions may

fit. Many varieties of supervenience have been identified: weak, strong, global, regional, and
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others. They differ along two axes. First, how to spell out the idea of sameness or difference

in a class of properties. Second, what modal force to provide. However, for purposes of this

paper, these issues will be secondary. It will hence be useful to fix the core idea of which

these are elaborations. Write ‘x has the same C-properties as y ’ as ‘x ∼C y ’. The the core

notion is simply covariation ofA with B, which we may express as:

∀x∀y(x ∼B y → x ∼A y).

To get supervenience from this, one needs to fix what x and y are. Options include

individual objects, n-tuples of objects, regions or parts of possible worlds, or entire possible

worlds. One also needs to appropriately modalize covariation.2

Once we focus on covariation, it is easy to see the importance of what closure assumptions

we may make about a given class of properties. The stronger the closure assumptions we

make about the base class B, the harder it is to have sameness of B, and hence the easier it is
to have covariation. In an extreme case, closure assumptions can trivialize covariation, and

hence supervenience, entirely. If the closure assumptions on B imply that there are enough
B-properties that we never have sameness of B, for instance, then covariation ofA with B is
clearly trivial. These same holds if the closure conditions imply thatA⊆ B.
The closure conditions that have been discussed in the literature are usually not so

absurd. Most attention has been paid to logical closure conditions, especially closure under

Boolean operations. Closure under Boolean operations is at the very least useful. For

instance, it allows some common variants of familiar supervenience relations to be shown

equivalent.3 It is also controversial. Armstrong (1978), for instances, questions whether

negation and disjunction are always property-forming operations at all. With an eye more

towards the properties of a physical supervenience base, closure under disjunction has been

questioned by Teller (1983a). Post (1983) and Van Cleve (1990) have challenged closure under

negation. On the other hand, Van Cleve defends closure under disjunction. Kim mounts a

spirited defense of Boolean closure, saying its rejection “would work havoc on with free and

creative scientific theorizing.” (Kim 1990, p. 153.)

I am somewhat sympathetic to Boolean closure, but it is not my purpose to argue the
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point here. Rather, my concern is with closure under infinitary Boolean operations. In order

to make some more refined distinctions about infinitary closure conditions, it will be helpful

to reformulate them in the terms of formal logic.

For a class C of properties, start with a collection of predicate and relation symbols
corresponding to each (primitive) element of C (for most applications, the supervenience base
class B). Let L be the usual first order language whose sentences are built out of these
predicate and relation symbols using the logical operators ∧, ∨, ¬, →, ∀, ∃, = (or anything
else your favorite syntax might use). Sometimes, I shall assume that L contains constants to
name any object. However, the interaction of names and identify raises some difficulties that

we will have to keep track of below, so unless otherwise specified, assume L does not contain
constants. Note that L is an interpreted language. In fact its interpretation is by intensional
elements, like properties, but for most of what follows we may think of it as an ordinary

interpreted extensional first order language.

Now, in place of Boolean closure of the class C, we may talk of L-closure: the assumption
that any formula of L corresponds to an element of C. We only really care about those
formulas with at least one free variable, but throwing elements corresponding to

sentences—something more like facts than properties—changes nothing important here. If

the class C has no relations, the step from Boolean to L-closure is vacuous. If there are
relations, then it is no more than a technical convenience. If we have a relation R(x,y) in C,
we assume that we also have in C such properties as ∃yR(x,y). If we are to work with

relations, we need to have these available. Note that if we have a name ‘a’, then we also have

R(x,a).4

To describe infinitary closure, we simply modify our syntax to allow disjunctions and

conjunctions of infinite sets of formulas. For any set of formulas Φ = {φ1,φ2, . . . }, there is a
formula

∨
Φ which represents the infinite φ1 ∨φ2 . . . and

∧
Φ which represents φ1 ∧φ2 . . . .

(Φ does not need to be an ordered set. I am just pretending it is for illustrative purposes.) To

simplify notation, I shall sometimes write
∨{φi | i ∈ I} as ∨i∈I φi. If we allow only finite

quantifier prefixes, we have the language logicians call L∞ω. For formal purposes, in place of
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infinitary Boolean closure, we may talk of L∞ω-closure.5

Infinitary closure has certainly raised some eyebrows,6 but for the most part, those who

accept Boolean closure at all have taken infinitary closure for granted. Each of the authors

cited in Note (3) in fact supposes infinitary closure. The general assumption seems to be that

infinitary closure stands or falls with finitary Boolean closure. It seems to be assumed that

this is an unremarkable technical point, or perhaps a matter of logic. Something of this is

echoed in Kim’s defense of infinitary closure:

I don’t see any special problem with an infinite procedure here, any more than in

the case of forming infinite unions of sets or the addition of infinite series of

numbers. (Kim 1990, p. 152.)

As a technical point, the general assumption is a mistake. L∞ω behaves very differently

from L, and one could find all kinds of reasons for rejecting full L∞ω-closure that have

nothing to do with any worries about the coherence of infinitary procedures. I shall provide

some examples related to supervenience in Section (2). More importantly, those inclined to

accept some infinitary closure are not thereby committed to accepting all of L∞ω-closure.

Between L and L∞ω is a rich range of logics, with substantially different properties, as I shall

discuss in Section (4).

My primary aim here is not to challenge or defend Boolean closure. Rather, I shall argue

that those inclined to accept some infinitary Boolean closure face some difficult choices in

deciding how much infinitary closure to accept. Moreover, these choices are not mere

technicalities; they amount to some hard metaphysical issues. Some of these, we shall see,

are distinct from those raised by the question of finitary closure.

2. The Perils of Infinitary Closure

In this section, I shall compile a list of troubling consequences of L∞ω-closure. Different

views will no doubt find some of them more troubling than others, but taken together, they

provide a preponderance of evidence full L∞ω-closure is unacceptable. Thus, especially if we
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are inclined to accept some infinitary closure, we have good reason to look to infinitary

languages which substantially restrict L∞ω. It is in deciding how to restrict infinitary closure

that we encounter metaphysical problems, as I shall argue in sections to follow.

A. The Reduction Argument. Kim (1984) argues that strong supervenience implies

reduction. Strong supervenience is based on individualistic covariation. In the covariation

schema above, x and y are taken to be individual objects. As has been much discussed,

strong supervenience modalizes covariation to give it the force of inter-world comparison.

The use of infinitary closure, however, really only interacts with covariation. To make this

clear, we may divide the argument into three steps.

Step 1: disjunctive B-surrogates. The idea here, roughly, is to find a way to replaceA-talk
with B-talk, by finding a surrogate for eachA-property within B.
Pick any A ∈A. To build a surrogate for A, we start by taking any x such that A(x). We

then look at the collection {B ∈ B | B(x)} of all the properties in B which are had by x. Let
βx =

∧{B ∈ B | B(x)}. To build the B-surrogate for A, we simply form the disjunction
∨{βx | A(x)}. Call this ‘α’. (For uninstantiated A, pick or build an uninstantiated member of

B any way you like.)
It is easy to see that covariation implies ∀x(A(x)↔ α(x)). Furthermore, L∞ω-closure

ensures that α ∈ B. Hence, for each A inA, we have a surrogate α in B.
Step 2: necessary coextensiveness. Once we have identified α as a surrogate for A, it can

be shown that strong supervenience implies that α and A are not merely coextensive, but

necessarily coextensive.7

Step 3: Reduction (?). The final step is to argue that the availability for eachA-property of
a necessarily coextensive surrogate B-property amounts to the reduction ofA to B.
Some, such as Jackson (1998), take this conclusion to be evident. Others, such as Kim, are

more cautious. It is striking, as Kim notes, that the necessary equivalence established in step

(2) provides a ‘bridge-law’, which implies that by the standards of the deductive-nomological

model of reduction,A-properties, or theories of them, can be reduced to B-properties or
theories. On the other hand, the deductive-nomological model is by no means universally
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accepted. Whether or not by some other more nuanced standard the construction of steps (1)

and (2) is sufficient for reduction is, of course, a subtle matter. Kim himself is willing to

conclude that at least in a “somewhat attenuated sense” (1990, p. 154) it is.

Whether or not it is genuinely reduction or something less, the presence of a necessarily

equivalent surrogate in B for every property inA is perhaps the most well-known
consequence of L∞ω-closure. Though well-known, it is not the most threatening of its

consequences, as we will now see.

B. Fully Describing a Possible World. The next consequence of L∞ω-closure is that B
contains enough information to fully describe possible worlds. This is surprising enough on

its own, and it will be useful for generating other results as well.

Let us think of each possible world as given by a structure. (Specifically, an L-structure in
the usual logician’s sense of a domain for quantifiers and extensions for all the relations of

L.) This is the usual assumption of modal logic, and as a matter of technical convenience, it is
unremarkable.

So, fix some structureM with domain M . If we add constants ṁ for each elementm of the

domain M , it is entirely easy to to use L∞ω to describe M completely, i.e. up to isomorphism.

Let Diag(M) be the diagram ofM: the collection of atomic and negated atomic sentences

true in M. Then M is characterized up to isomorphism by:

∧
Diag(M)∧∀x(

∨

m∈M
x = ṁ).

There may well be ground for worrying about the use of the predicates x = ṁ. However, it

is one of the really deep results about L∞ω that they are not needed. Even if L contains no
names, for any L-structure M there is an L∞ω-sentence σM—called the Scott sentence of

M—which fully describes M.8

C. Resplicing. One of the more controversial closure conditions to be discussed in the

literature is resplicing: for any property P such that its extension Pw in world w is the

extension of some property in B, P ∈ B. This makes B closed under arbitrary rearrangements
of extensions of its properties. This condition has the surprising effect of making strong and
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weak supervenience equivalent. Many have found this untenable.9

One of the most striking consequences of L∞ω-closure is that it implies closure under

resplicing. This can be shown by using our technique for fully describing a possible world.

Let W be the set of worlds. From our construction above, we have for each w ∈ W a sentence

σw which describes it. Now, pick some set of extensions of B-properties {Ew | w ∈ W} to be
respliced. Each Ew is the extension of some L∞ω-formula φw in w. Then, the resplicing of

this set is given by:
∧

w∈W
(σw → φw).

Under L∞ω-closure, this is a property in B, so B is closed under resplicing.

D. Adding an Arbitrary Set. Resplicing has been challenged for its consequences for

strong and weak supervenience, and simply for the implausibility of the properties it builds.

In many cases, L∞ω-closure can in a much more direct way add all sorts of unlikely

properties to B.
We begin by looking at sets. L∞ω can in some cases define an arbitrary set. I shall provide

two examples, which have different metaphysical costs.

Pick some set of objects, say P . P may be as arbitrary, gerrymandered, or wild as you like.

Suppose, first, that we have either names ṗ for every element of P , or that we can add them.

Then, using these names and identity, we can describe P in L∞ω simply as:

∨

p∈P
x = ṗ.

This construction is entirely independent of the class B. Hence, it shows that L∞ω-closure of

any class implies that it contains any set of objects that might be named.

It is crucial to this construction that we use the predicates x = ṗ, and this is no doubt

controversial. For one thing, if we assume we already have names for every object, and allow

the properties x = ṗ, we trivialize supervenience. However, we do not need to assume this,

but only that we can introduce names for some collection of objects. I do believe there is a

variety of physicalism which should accept this for a physical supervenience base. After all,

naming objects is certainly something which goes on in the physics lab all the time. Even so,
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many current physicalists will not accept it. For instance, Lewis (1986) explicitly require the

supervenience base to be purely qualitative, which surely disallows anything like x = ṗ.

Others will object that these amount to adding essences, or haecceities, which already go

beyond the physical.10

There are, however, ways to do the same thing without name and identity, in some cases.

All we need is a world where enough combinations of properties allow us to narrow down to

a single object. To take a simple example, suppose our world has objects arranged like the

rational numbers, and properties corresponding to open intervals. Now, each such interval is

filled with lots of rational numbers. We are to start with nowhere close to uniquely

identifying properties. We have nothing that appears to go beyond the qualitative. But, we

can narrow down to single rational numbers by taking intersections of intervals:

n
m
=
⋂
{(a, b) | n

m
∈ (a, b)}.

Now, I used the name n
m to indicate this, but it is just the intersection of some collection of

intervals, say
⋂
Φ.

Each interval corresponds to a predicate of L. Hence, this intersection is in fact an
L∞ω-construction. We have:

Ξ(x)↔
∧
Φ(x),

where each member of Φ is a predicate for an interval. This relies on no names and no

identity—nothing that appears to be non-qualitative. Yet Ξ holds of exactly one object: n
m . We

can form a corresponding predicate Ξp for any object (rational number) p. We can thus

construct any set of objects P as:
∨

p∈P
Ξp,

more or less as we did above. Indeed, we may have more to worry about, as with the family of

Ξp we have uniquely individuating properties for all objects, which is a disaster for

supervenience.

Now, exactly how we build the Ξs will depend on just how objects and properties are

distributed in a world, and there may well be some worlds where we cannot do it. However,
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closure assumptions are not the sort of thing we choose to invoke in a given world, and then

suspend in others. So the fact that in some worlds we can construct the Ξs using L∞ω is yet

more grounds for worry about L∞ω-closure.

E. Adding an Arbitrary Property. We now have L∞ω-constructions which describe

arbitrary sets and arbitrary worlds. Together, these allow us to add more or less arbitrary

properties to any class of properties. Pick some set Pw for each world w. Once we have

L∞ω-formulas φw for each Pw , and σw for each world w, we can give the property with

extension Pw in world w by:
∧

w
(σw → φw).

In a modal context, we can think of sets as rigid properties: those with constant extension.

L∞ω-closure can have the result that any such property is in B, as well as many arbitrary
non-rigid properties as well. Just looking at the rigid properties provides a startling result. A

physicalist, for instance, would have to grant that the base class B contains rigid properties
for any arbitrary set of objects, including objects whose only feature in common is some

moral property, or aesthetic property, or nothing more than appearing on some random list.

The substantiality of supervenience is clearly threatened.11

I conclude that the assumption of full L∞ω-closure has too many unacceptable

consequences, and must be restricted in some way. As I mentioned, I do not insist that

everyone find all the consequences odious. Opinions differ as to which are problems, and

how bad. However, the preponderance of evidence is that L∞ω is too much.

3. The Source of the Problems

Before looking at the technical resources for restricting L∞ω, we should ask what really lies

behind the examples of the last section. The common symptom of all of them is unexpected

growth of the base class. It grows to contain disjunctive surrogates in the reduction

argument, or resplices, or even arbitrary sets and properties.

The example of adding an arbitrary set, I believe, shows must clearly what the cause of
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this symptom is. L∞ω-closure enables us to carry out essentially set-theoretic constructions

within a class of properties. In the example of adding a set, we do set theory by big

disjunctions and conjunctions of claims about the members of sets, but we do some set

theory nonetheless. Saying (
∨

p∈P x = ṗ)(a), for instance, is just to say a ∈ P . Though it is

less blatant, set theory is at work in the other examples as well. We do some more subtle set

theory to provide reconstructions of possible worlds, and then use them to combine other

sets into resplicings. The crucial step (1) of the reduction argument can be thought of in

terms of sets of base properties as well as in terms of disjunctions. Assuming full

L∞ω-closure amounts to assuming our class B is closed under a broad range of set-theoretic
constructions.12

We should well expect a closure assumption that builds in this much set theory to have all

sorts of untoward consequences. Set theory can hardly be expected to respect physicalist

scruples, or any other requirements we might place on the base class B. Quite the reverse, set
theory has a way of smuggling in all kinds of things into B, whether we think they belong
there or not. Sometimes, as in the addition of arbitrary properties case, set theory simply

puts things in B that have nothing to do with what started out in it. It just throws them in.
Other times, as in the reduction argument case, set theory enables us to build new properties

out of what we already had in B. When these combine, the result is that the class B is
expanded well beyond what we can tolerate.

It will come as little surprise that with enough set theory, one can build at least surrogates

for all sorts of properties, including the wildly arbitrary ones that we considered above. If the

reduction argument had claimed only that in set theory, surrogates for supervening

properties can be constructed, I doubt it would have raised many eyebrows, or been of much

concern to the non-reductive physicalists at which it takes aim. Set theory is, of course, a

theory—one very well-suited to this kind of surrogate construction. The surprise of the

construction came because it looked like it did not use anything like set theory. It seemed to

use only some innocuous forms of reasoning—only logic. Infinitary logic does not look like a

theory; it looks like logic.
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The moral of the discussion above is not that infinitary logic is bad, but rather that one

must not let looks deceive. Assuming infinitary closure is to assume some degree of closure

under set-theoretic constructions. One must decide if and how much set-theory-like

construction one is going to include in the closure conditions on the base class. Thus, in spite

of the way things look, one must decide how much infinitary logic to allow.

We will see in the next section that there are reasonable ways to do this. They will require

us to make some very fine-grained choices among sets. As these choices amount to deciding

what is in a metaphysically significant supervenience base class, we can already see that they

will force us to confront some metaphysical issues.

4. What to Do

Unrestricted L∞ω-closure amounts to closing under a significant amount of set theory. The

examples of Section (2) show that this can have some unwelcome consequences. Of course,

those who reject Boolean closure in any form will find comfort in our dismay.

Notwithstanding, the question I shall pursue is whether there is some way to keep Boolean

closure, grant to Kim and others the point that once we accept Boolean closure, simply

refusing to consider any infinitary Boolean operations appears poorly motivated and difficult

to defend, and yet rein in the amount of set theory we build in along the way.

There is a way. The task is to find some suitably fine-grained way to restrict L∞ω without

cutting all the way back to the finitary L. It turns out there is a very elegant way to do so. The
basic construction that makes infinitary logic infinitary is

∨
Φ. L∞ω places no limits on which

sets Φ can be used. What is needed is some principled way to place limits on which sets Φ are

allowed. Experience has shown that the most effective way to do so is based in their

complexity.13

The idea is to allow an infinite disjunction
∨
Φ only if Φ is a reasonably simple, reasonably

‘nice’, set. The way this is done is to look for a mini-universe of ‘nice’ sets, and to allow an

infinitary conjunction or disjunction only if the set of formulas conjoined or disjoined can be

thought of as coded up as a set in the mini-universe of nice sets. What counts as nice? Really
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nice is finite, where everything works out simply. So nice is having enough features of the

finite case, taken loosely enough to allow a rich classification of infinite sets by how nice they

are.

It turns out there is a very natural definition of ‘nice’ in this sense. A mini-universe of nice

sets is best identified with what is technically known as an admissible set. I shall not formally

define this notion, as it is an entirely technical matter. I shall mention one important feature

of admissible sets, which might help to give a sense of why they are useful. Given an

admissible set A, there is a next biggest admissible set A+. Given a certain degree of niceness

A, we can identify the next-less-nice collection A+. The progression A,A+, A++, . . . produces a

kind of ranking of how complex the elements of these collections are. It also turns out that

admissibles have important connections to definability theory. The question of where in the

progression a set falls comes down to how complex its definition needs to be.14

One of the truly remarkable ideas in the study of infinitary logic, due to Jon Barwise, is to

apply the notion of admissible (nice) set to it. The basic idea, as I said, is to insist that when

we disjoin or conjoin a set of formulas Φ, the set be nice. Actually, it turns out the right idea

is to insist that all formulas be nice. We must think of each formula of infinitary logic as

coded by a set.
∨
Φ is the set 〈∨,Φ〉. Admissible sets are closed under pairing, so to require

that Φ be nice is just to require that 〈∨,Φ〉 be nice.
The right way to restrict infinitary logic, it turns out, is to require that all formulas be nice:

we find some admissible set, and restrict infinitary logic to formulas that are in it.

Technically, this gives what is called an admissible fragment of infinitary logic.15 The

fragment produced by an admissible set A is usually written LA. Countable admissible

fragments turn out to be technically very nice indeed. They behave very much like first-order

logic, especially in yielding strong completeness and compactness theorems.

Restricting infinitary logic this way provides a technical basis for responding to the kinds

of problems we saw in Sections (2) and (3). Whether or not an infinitary operation like
∨
Φ is

allowed depends on the set Φ. For a given admissible fragment LA, it is allowed only if the set

Φ itself is in A—is niece enough. As a result, the set-theoretic constructions that can be
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carried out in LA are restricted to those that fall in A. For example, the formula
∨

p∈P x = ṗ is

in a given LA just in case the set P is in A. Hence, the question of whether or not we allow

this infinitary formula comes down to the question of whether or not we include the set it

defines. We can thus use the restriction to a suitable LA to block the construction for adding

an arbitrary set of Section (2). The same goes for the construction for adding an arbitrary

property. Likewise, in the reduction argument, the formula
∨{βx | A(x)} is only allowed if

{βx | A(x)} is in A. Each problem of Section (2) can be avoided by restricting to a sufficiently

narrow LA, and thereby limiting the set-theoretic constructions we allow for the class B.16

If we want to have infinitary closure, we have to decide how much. We may decide by

choosing an admissible fragment LA to describe closure. This will involve deciding whether

certain formulas are acceptable or not. Many of these formulas describe sets or

properties—they embody set-theoretic operations. In choosing how much closure to have,

one will have to decide which sets and properties to allow.

The choices must be very detailed. There are lots of admissible sets, and so lots of

admissible fragments of infinitary logic. In fact, for any infinite set, there are admissibles that

it contain it, and admissibles that do not.17 The result is that in choosing how much infinitary

closure to allow, we will have to make specific choices about whether or not to accept each of

a huge range of sets and properties.

We can now see clearly that this is not simply a matter of whether infinitary closure in

general is coherent or acceptable. Even if we grant that it may be, we have to decide how

much infinitary logic—which fragments—to accept. There are enough admissible fragments

available to block any of the consequences of Section (2). Indeed, there are so many that one

can pick and choose among these consequences pretty much at will. But the cost is that one

also has to pick and choose equally among sets and properties.

Of course, we had to be prepared to make decisions of this kind. Anyone interested in a

class of properties for some philosophical purpose must be prepared to say what should be

in it. The question of finitary closure already raised the issue of what ways elements of the

class can be combined. At the very least, I have shown that these questions appear in the

14



extension from finitary to infinitary closure as well. Those who think that infinitary closure

comes for free are mistaken. Indeed, I believe we have shown somewhat more. The range of

choices that must be made in the infinitary case is more extensive. For any given set,

property, or collection of properties, there will be some admissibles—some infinitary closure

conditions—that include it, and some that do not. For each infinite set or set-theoretically

describable way of building properties, we will face a distinct choice. We will have to make far

more discriminating choices about closure than just, say, whether we like negation or

disjunction. The technically available range of options in the infinitary case is so rich that it

forces an equally rich range of metaphysical decisions on us.

The sort of choice we face in the infinitary case is well-illustrated by the reduction

argument. We are offered a property
∨{βx | A(x)}. We can rule this in or out, depending on

whether we decide that the collection {βx | A(x)} is a suitable base for building a disjunctive
property. Technically, we can find admissibles that contain this set, and ones that do not

(assuming it is infinite), so either option is open. One might wish to argue that it should be

ruled in. For instance, one might argue the βxs are not just some arbitrary collection, but

rather they are already brought together by A(x), and so are a set we should rule in. Others

will reject this, on grounds that A(x) is merely supervenient. Either way, my point is, the

argument (for those not already determined to reject all infinitary disjunctions) comes down

to some such specific question. We will face an equally specific question for any of the rich

range of set-theoretic constructions that can be carried out in L∞ω. Taken together, these will

require us to make a very wide range of highly detailed metaphysical choices: wider and more

detailed than we faced in the finitary case. Far from being a mere technicality, the technical

situation makes the step from finitary to infinitary closure one that confronts us with much

wider and much more subtle range of metaphysical issues than we had before.

5. The State of Things

So far, I have argued that infinitary closure raises a full range of subtle metaphysical

problems. I suggested in the last section that we will face more, and more specific, choices

15



than we did in the case of finitary closure. Hence, I suggested, the step to infinitary closure

makes for a more complex metaphysical situation. Yet so far, the most I have shown is that

the step to the infinitary raises additional complex questions of a kind we were already

prepared to answer. We were prepared to decide what to count as a supervenience base

property, and which combinations of base properties to allow. I have argued the step to the

infinitary raises a surprising array of additional complexities, but they remain issues of this

sort.

This is not the end of the story. I shall now argue that the underlying source of the

complexities we have seen in fact raises a metaphysical puzzle all its own.

To see this, we must return to the basic idea behind supervenience. As has been much

remarked, supervenience is supposed to capture a sort of determination. A physicalist about

the mental, for instance, might say that the physical properties of a person (her brain? her

environment?) determines her mental properties. Many want to capture this situation by an

appropriate supervenience relation between mental and physical properties. This is

sometimes explained by way of the metaphor of the Laplacian demon (as in Horgan 1983).

The demon fixes the base facts, by distributing base properties among appropriate objects.

The idea of determination is that the demon has no further task to do to fix the supervening

facts.

The special problem infinitary logic raises is one of what counts as the demon’s tasks. The

demon is to fix all the base facts—fix the base state of the universe. An initial assessment of

these tasks seems to be that they are described by the true finitary sentences that can be

expressed in the appropriate language—all the true L-sentences. We will see, however, that if
we expand our horizons to the infinitary, we can find additional facts corresponding to

infinitary sentences, that are not on our list of the demon’s tasks. Yet these are expressed in

the language of the base, so it appears we have found additional base facts. We thought we

had a complete list of the demon’s tasks—the complete base state of the universe—but now

we appear to have found something left out. As a result, we shall see, infinitary logic makes

trouble for the idea that there is a complete state of the universe, relative to some class of
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properties. We face a problem of how to make sense of the complete physical state of the

universe, for example.

Let me explain a little more fully. We know that in many cases, there is no single finitary

sentence expressing the state of the universe. If there are infinitely many things to

say—infinitely many combinations of properties and objects bearing them—there is none. We

might have thought that this is not so for infinitary logic. After all, in infinitary logic we can

conjoin all the true finitary sentences. Is this not the statement of the complete state? If we

conjoin all the true finitary sentences of the language suitable for expressing physical

properties, for instance, have we not expressed the complete physical state of the universe?

In general, no. Once we grant that we can express things using an infinitary language, we

no longer have any guarantee it is. In many cases, we can show that there is something true

which is expressible only in the infinitary language, and so left out of the conjunction of true

finitary sentences. Insofar as the infinitary language is still the language of, say, physical

properties, we may well have to conclude there is some aspect of the physical state of the

universe that we failed to capture in our attempt to express its complete physical state.

This is not an entirely trivial result. We might have thought that though infinitary logic

gives us more sentences, there is nothing really new to say. We might have expected infinitary

sentences just to repeat at length what we said with combinations of finitary sentences

before. But the behavior we saw above should make us doubt this, and indeed it is not so. It is

a fact that many of the nicest infinitary languages cannot express the complete state of things

relative to that language (the conjunction of all true sentences of that language). The proof of

the general fact involves a couple of technical difficulties, and so is consigned to an appendix.

Without going into the details now, what we have already seen should give some sense of

why this is so. The problems raised in Section (2) and the diagnosis of Section (3) all point to

what we might call the expansionist tendency of infinitary logic. Given some resources, like

some class of properties, infinitary logic tends to allow one to exceed that class. We have seen

how it can do so by providing set-theoretic constructions which can be used to build new

elements not in the class with which we started. If we start with a class of true sentences,
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infinitary logic allows us to find a new true sentence not in the class. We can find one that is

genuinely new, in that it expresses something different from anything in the initial class.

Hence, if we start with some list of sentence which we take to provide the complete state of

the universe, infinitary logic provides us with a new sentence not on the list. It shows there

had to be something we left out.

This creates a puzzle for what the demon’s tasks are. Initially, it appeared they were more

than adequately described by all the true finitary sentences. But once we allow infinitary logic,

we can find new facts, not on the demon’s list. These are expressed in the infinitary L∞ω; yet

insofar as they are expressed in the vocabulary of the base class, it appears they should have

been on the demon’s list after all. They appear to be perfectly good base facts. The situation

now worsens, if we have all of L∞ω available. It is no help simply to grant we may have

missed something, and throw in the new fact. The result is yet again a set of sentences of

L∞ω, and so again we will be able to find a further new fact, expressed by a sentence not on

the list. If we start this process, and have all of L∞ω, we can never finish. We can never come

to the complete state of the universe.

This puzzle has two aspects. First, it is a reflection of the issues we have been discussing

all along. The additional facts the process generates have just the features we expect of

supervenient facts. They are not fixed directly by the demon, in that they are not the (initial!)

list of its tasks to perform. Yet they are determined by what the demon does. The truth of the

infinitary sentences is determined by the truth of the finitary ones.18 It is striking, though,

how close they are to the base facts the demon does fix. They are not the sorts of facts, like

mental ones, which seem to be expressible only in some other vocabulary. They are expressed

in the same vocabulary, with only some extra logical resources. For this reason, we might

have been inclined to count them as indeed part of the base. The assumption of L∞ω-closure

does so.

The temptation here is to throw lots of infinitely complex properties into the base. The

discussion of the preceding sections shows that this is a temptation to go down a dangerous

path. The reduction argument shows that if we throw enough complex properties into the
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base, we wind up with surrogates for all the supervening properties, whether they looked like

they were just infinitely complex base properties or not. As we have seen, there are much

more dire consequences in store. We have seen it is easy to throw in so many complex

properties as to weaken the supervenience base to the point of trivialization.

In Section (4), we saw how to avoid disaster by restricting closure to some suitable LA. As

we reflected on the constructions of Section (2), this appeared to be the correct approach,

though it raised a range of complex metaphysical problems. I believe it is the correct

approach, but now, when we apply it to the puzzle of the demon’s tasks, we encounter a

more perplexing problem. This is the second aspect of the puzzle.

We may indeed apply the solution of Section (4) to the demon’s tasks. We may say that all

the base facts there are are those that correspond to true sentences of some suitably chosen

LA, and thereby fix the list of the demon’s tasks—thereby fix what we will count as the

complete base state of the universe. We can indeed construct a new true sentence of L∞ω not

on the list, but it will not normally be a sentence of LA, so we may simply insist that it does

not give us a new base fact we left out. We might, for instance, say that LA gives us all the

physical facts, and while the new sentence gives us a fact, it is not a physical fact.19

The problem is that it is very hard to find any reason to stop counting the new sentences

as giving physical facts. In the cases of Section (2), we might well have found good

metaphysical reason to rule out some property as too gerrymandered to be physical, for

instance. But nothing like this is going on in the case of the demon’s list. All we need to do to

find a new true sentence which goes beyond the list is to collect together the sentences on the

list and say ‘all of those’. This will hardly be gerrymandered, or otherwise metaphysically

frivolous. Indeed, even outright resistance to any infinitary closure of any kind does not seem

to provide a satisfactory answer. When talking about the complete state of the universe, we

are already talking about something infinitary. The demon’s list of tasks is infinite. To fix the

complete state of the universe, the demon must already perform an infinite supertask. If we

then find that in the realm of such infinite supertasks there is something we left off the list,

one more infinitely complex arrangement of physical properties, what grounds have we to
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insist it is not a further physical property?

To get a further sense of why this problem is hard, it is useful to shift our attention to

what the demon can deduce. The demon has already performed the infinite supertask of

fixing all the finitary facts. Surely, it can then step back and observe that it made all those

true. This appears to be something the demon can determine a priori from the base physical

facts. If it is not to be counted as physical fact, then there is something the demon knows,

indeed can come to know a priori, which is not a base fact—which is not on the list of the

demon’s tasks. Given this close, a priori connection with the base facts, in what way is such a

fact not itself base fact? Why is the summation ‘all of them’ for all the physical facts not itself

a physical fact? At some point, to avoid disaster, we will have to say it is not.20

We might attempt to explain how such facts could fail to be physical facts by proposing

that we are asking too much of the demon. Perhaps it is only able to recognize physical facts

as it needs them, and cannot make sense of ‘all the facts’ in any way but that in which

someone dropped in the middle of a forest can talk about ‘all the trees’. This seems

unsatisfactory. The person in the forest is indeed ignorant of some perfectly ordinary

fact—how many trees there are around her. We cannot say likewise of the demon. There

cannot be an ordinary physical fact of which it is ignorant. We can only claim that what the

demon is ignorant of is not a physical fact, but a kind of super-physical fact. We are thus

right back to the hard question, of explaining how ‘all the physical facts’ can fail to be a

physical fact.

The physicalist faces a hard choice. She must cut off infinitary logic at some appropriate

LA, to avoid undermining supervenience. Yet she will thus at some point have to insist that

some fact of the ‘all of these physical facts’ kind is itself a non-physical fact. (Of course, the

problem is not restricted to physicalism. The same goes for anyone who wants to hold there

is a fundamental class of properties on which other properties supervene.) The puzzle is to

explain why any such choice can be right.

I do not want to claim that there is no way to solve this puzzle. How it might be solved

will depend on the details of one’s philosophical position, so I shall not speculate on which
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ways will be found better or worse. I only wish to point out that there is a problem here, and

that attention to logic shows that is a hard one. Though it has the same source as those

raised in the preceding sections, this puzzle is not an analog or refinement of a problem that

appeared with respect to finitary closure. Attention to infinitary logic really does pose some

new and difficult metaphysical problems for supervenience.

Appendix

Here I sketch a proof of the claim that that many nice fragments of infinitary logic cannot

contain a sentence that is equivalent to the conjunction of all true sentences of the fragment.

I shall assume familiarity with the basic works of Barwise (1975) and Moschovakis (1974).

Actually, I shall show that many nice fragments cannot contain their own truth predicates.

This suffices, as these fragments contain enough syntax that if they contained sentences

equivalent to the conjunction of all their true sentences, they would also contain truth

predicates.

So, what I shall do is show that in reasonably nice cases, the usual Tarski undefinability of

truth result can be extended to infinitary languages. The main difficulty is that to talk of truth

predicates at all, we need some syntax coding. For infinitary languages, this is slightly tricky.

(Gödel’s original result that syntax can be coded in arithmetic relies on some particular

properties of ω.) I shall here restrict my attention to those infinitary fragments which behave

enough like finitary ones to provide for relatively easy syntax coding.

To this end, let us consider a countable structure M with countable language L. Let us
assume that M is acceptable in the sense of Moschovakis (1974), and furthermore that there

is a hyperelementary coding of the the domain M of M in the coding system NM. There are

many such structures, including N itself, and structures of the form 〈N, R〉 which expand N.
The languages I shall consider here are the admissible fragments LHYPM for such M.

We need a notation system that allows us to define the syntax of LHYPM in LHYPM . We may

begin by observing that for such M, HYPM is projectible into M (Barwise 1975, Theorem

VI.4.12). Inspecting the proof of this theorem, we can see that the availability of a
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hyperelementary coding of M in NM allows us to assume that the notations are all in Seq, the

elementary collection of NM-sequences.

It is well-known that the syntax of LHYPM is ∆ on HYPM in the language L∗ = (L,∈).
Together with the projectibility of HYPM, this shows that each syntactic relation is a ∆

relation on M . Furthermore, as each notation is in Seq, each syntactic relation is a ∆ relation

on the elementary Seq. Hence, by ∆-separation, each syntactic relation is a relation on M in

HYPM. Now, we can appeal to a general theorem that any relation on M in HYPM is

LHYPM -definable (Barwise 1975, Corollary IV.3.5). This gives us the LHYPM-definability of the

syntax of LHYPM .

Once we have syntax coding in hand, we can just repeat the usual proof of the

undefinability of truth. Suppose, for contradiction, that LHYPM contains a predicate Tr which

is true just of true sentences of LHYPM , i.e.:

M � Tr(�φ�)↔ φ.

Given that the syntax of LHYPM is LHYPM -definable, we can apply the usual proof of the

diagonal lemma (as in, e.g., Boolos and Jeffrey 1989) to LHYPM to find a sentence λ such that:

M � ¬Tr(�λ�)↔ λ.

Putting the two together, we have:

M � Tr(�λ�)↔ ¬Tr(�λ�),

the familiar contradiction.21
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Notes

1For what happens in this paper, it will not be important just what the status of properties

is. Nearly everything said here would hold if we started with predicates rather than

properties. The early Hellman and Thompson (1975) describes supervenience in terms of

facts rather than properties, but in developing their view, they really work with predicates

applied to objects, so the difference is not important to this discussion.

2The variety of supervenience relations was discussed by Teller (1983b), and then Kim

(1984), which gave us the familiar list of weak, strong, and global supervenience. The distinct

contributions of covariation and modalization are nicely brought out by McLaughlin (1995)

and Bacon (1995), which calls a version of my covariation ‘protosupervenience’. Some

scrutiny of the modal notions involved in supervenience may be found in Stalnaker (1996)

and Wedgwood (2000). The question of whether supervenience should be

‘individualistic’—considering only properties of individual objects—is raised by Petrie (1987)

and discussed in depth by Post (1995). The idea of regional supervenience is due to Horgan

(1993).

3Among places where one sees the use of Boolean closure assumptions are the many works

of Kim (e.g. Kim 1984, 1990), Bacon (1986), Paull and Sider (1992), and Stalnaker (1996).

4For specific applications of supervenience, the presence of relations in the base class may

well raise some subtle issues. For instance, what exactly counts as the physical relations an

object stands in, and whether they do or do not suffice for a desired supervenience relation,

can raise all sorts of questions. Contingent existence can further complicate matters. For

some discussion, see Kim (1987, 1993a), Petrie (1987), and Post (1995). The ‘Humean

supervenience’ of Lewis (e.g. Lewis 1986), explicitly supposes the base to include

spatio-temporal relations, but no other relational properties.

These subtleties do not matter for my point here. All I am saying is if for some reason we

settle on a supervenience base which contains some relations, and we also wish to assume
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Boolean closure, we should in fact be assuming full L-closure.

5The ‘sentences’ of an infinitary language like L∞ω are mathematical abstractions, usually

defined in set theory. If you like, you can think of the disjunction
∨
Φ as being nothing other

than the set 〈∨,Φ〉. It does not matter that in crucial ways these sets fail to resemble the
sentences of natural languages. The sentences of more familiar finite formal languages, like

first order logic, also fail to resemble the sentences of natural languages in crucial ways.

Aside from not following the syntactic rules of natural languages, as Sylvain Bromberger

delights in pointing out, these formalisms do not have a phonology, and so cannot be uttered

in the normal sense.

6In a much-cited passage, Teller (1983a, p. 58) notes that the infinite disjunctions involved

in Kim’s argument will be “awfully fat.”

7Whether these steps works for other supervenience relations is a question of some

delicacy. Jackson (1998), for instance, gives a version of it for the supervenience of ethical on

physical properties. Jackson works primarily with a global supervenience relation, rather than

the strong supervenience of Kim’s argument, but he does note that his version of the

argument relies on special features of the relation between ethical and physical properties.

There is some debate over whether or not global supervenience relations support the

reduction argument generally. See Petrie (1987) and Grimes (1995). In the background here is

the long-running dispute over the relation of global to strong supervenience. See, in addition

to Petrie’s paper, Kim (1984), Paull and Sider (1992), and Stalnaker (1996).

8This result is known as the Scott isomorphism theorem, due to Dana Scott, generalized by

Chang. A proof may be found in Barwise (1975). There are some technical subtleties about

the notion of ‘fully describing’ a structure. Scott sentences characterize countable structures

up to isomorphism. If we look at uncountable structures, we get only what is called ‘partial

isomorphism’. Partial isomorphism is slightly weaker than isomorphism, but a theorem of

Karp shows partial isomorphism to be equivalent to the relation of making all the same
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sentences of L∞ω true. This is adequate to ensure ‘sameness of word’, for our purposes at

least.

9The original argument is due to Bacon (1986). Critical responses were offered by

Van Cleve (1990) and Oddie and Tichý (1990). Bacon (1990, 1995) replies.

10I find this issue somewhat puzzling. Where, in naming a physical object, did we somehow

step outside the physical? Where did we invoke such a strong metaphysical tool as an

essence? Not, surely, in the ostension and baptism of the object. On the other hand, it may be

replied, in introducing a name, a rigid term, we entangle ourselves in the difficult issues of

transworld identity. Perhaps in doing so, we tacitly rely on some strong metaphysics?

11There is one technical matter that bears mention here. Worlds are taken to be

L-structures, where the L-vocabulary is the vocabulary of B. Technically, this is the natural
way to proceed. However, it may impose a kind of global supervenience constraint, as the

only differences in worlds to which we can appeal are B-differences. The matter is actually a
bit tricky, as whether this amounts to global supervenience depends on just what global

supervenience has in mind by B-differences. If it is just a matter of what finitary L-sentences
worlds make true, then we have lots of distinct worlds that have no B-differences. Any
elementarily equivalent non-isomorphic structures will be examples. If on the other hand, if it

is a matter of what L∞ω-sentences worlds make true, then we cannot violate it with the

techniques I have discussed here.

This may indeed restrict the range of properties we can add to those which satisfy a

global supervenience constraint, and it may likewise limit the amount of resplicing that can

be done. However, I do not think this matters very much. Even if there is a restriction, there

are still lots of wild resplicing that can be done, and it does not affect the issue of adding

rigid properties—sets—at all. As I mentioned, all I really need here is a preponderance of

evidence that L∞ω-closure has objectionable consequences, and we have plenty of that

whether the restriction is significant or not.

Incidentally, the arbitrary property construction does does provide an argument that
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under the hypothesis of L∞ω-closure, strong and global supervenience coincide. Stalnaker

(1996) gave an argument for this relying on infinite quantifier prefixes, at a minimum Lω1ω1 .

My approach avoids this in favor of the much more tractable L∞ω.

12This is a fact well-known to specialists. The best examples come from way infinitary logic

can describe ordinals.

13Experience has also shown that restrictions based on the size of Φ tend not to be helpful

for the problems we face here. Most of the difficulties of Section (2) can appear with even the

smallest infinitary language in terms of cardinality, Lω1ω, so long as we restrict attention to a

countable set of countable structures.

14For those who care about the details: The most important conditions of admissibility are

∆0-separation and Σ-replacement. The other requirements on admissibles are that they

satisfy some of the ordinary axioms of set theory (in unrestricted form): extensionality,

foundation, pairing, and union. See Barwise (1975) for an extended discussion.

For specialists: A+ is basically the sets that are hyperelementary over A.

15Again, for those who care: A fragment is a collection of formulas closed under finitary

logical operations, as well as subformulas and substitution of terms. An admissible fragment

is the intersection of an admissible with L∞ω. See Barwise (1975) for details.

16The case of Scott sentences is technically quite subtle, and really goes beyond the scope

of this paper. However, to gesture at some important results: Nadel (1974) shows that for

admissible A and structure M ∈ A, σM ∈ A+. It need not be in A. Nadel also shows that for

M,N ∈ A, M ≡ N(L∞ω) iff M ≡ N(LA). Hence, LA suffices to characterize structures in A up

to partial isomorphism.

17The set of hereditarily finite sets is admissible, so we can always find an admissible ruling

out any infinite set. On the other hand, the A+ construction can be used to build an

admissible containing a given set.
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18Either the conjunction or disjunction of all the true sentences of a given language works

like a truth predicate for that language. The idea that the relation of supervenient to base

properties bears some resemblance to that of truth predicate to the true sentences of a

language was, to my knowledge, first considered by Davidson (1970).

19Jackson (1998, p. 26) entertains the idea that the collection of physical facts must contain

a “stop” or “that is all” clause, and insists it is of a “purely physical character.” He has in

mind the problem for physicalists of ruling out worlds that are physically like ours but also

contain non-physical stuff. Though our settings are somewhat different, I too am arguing for

something like a stop clause. However, in my setting, granting its purely physical character

undermines its efficacy.

20In making such deductions, the demon might perform something much like what Horgan

(1983) calls ‘cosmic hermeneutics’. Horgan’s particular worry is whether the demon can

deduce facts expressible in the vocabulary of the supervenient class, which raises questions

about the a posteriori status of facts about meaning. Some, notably Jackson (1998) and

Chalmers (1996), endorse the prospect of cosmic hermeneutics. For critical discussion, see

Byrne (1999).

There are other problems for the demon if infinitary logics are around. For one thing,

once we leave countable admissibles, we get failures of compactness, often very bad ones. But

then, even if the demon is correct in some conclusion, it may be unclear in what sense it has

proved the conclusion.

21Andrew Botterell and Daniel Stoljar convinced me, or more forced me, to write this paper.

I am also extremely grateful to Alex Byrne, Ned Hall, Jim Pryor, Susanna Siegel, Zoltán

Gendler Szabó, Judith Thomson, Ralph Wedgwood, Steve Yablo, and two anonymous referees

for many helpful comments and discussion.
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Oddie, Graham and Tichý, Pavel (1990). “Resplicing Properties in the Supervenience Base,”

Philosophical Studies 58: 259–269.

Paull, R. Cranston and Sider, Theodore R. (1992). “In Defense of Global Supervenience,”

Philosophy and Phenomenological Research 52: 833–854.

Petrie, Bradford (1987). “Global Supervenience and Reduction,” Philosophy and

Phenomenological Research 48: 119–130.

Post, John F. (1983). “Comment on Teller,” in Terence Horgan (ed.), Spindel Conference 1983:

Supervenience, vol. 22 of Southern Journal of Philosophy Supplements, pp. 163–167.

Post, John F. (1995). ““Global” Supervenient Determination: Too Permissive?” in Elias E.
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