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For some time now, I have been exploring the relations between model theory,
logic, and the semantics of natural language. Some might think these are
all nearly the same thing. A view might hold that model theory is the
fundamental way we understand logic, and that it is equally the basic tool in
semantics, and that indeed doing semantics is just the same as doing logic.
We can do it for formal languages, or natural ones. This is a fairly strong and
contentious set of claims, but forms a natural and I think appealing view.
(The latter claims about natural language were at least held by Montague
(1970).) The number of books and papers whose titles have phrases like
‘model-theoretic semantics’ or ‘logic and language’ might also make one think
this view has some currency. Regardless, in earlier papers (Glanzberg, 2014,
2015) I have urged caution in these matters. I have argued for a real but
limited role for model theory in semantics of natural language, and I have
likewise argued for limited connections between natural language and logic
proper.

In this paper, I shall return to the relations between logic and semantics
of natural language. My main goal is to advance a proposal about what
that relation is. Logic as used in the study of natural language—an empir-
ical discipline—functions much like specific kinds of scientific models. Par-
ticularly, I shall suggest, logics can function like analogical models. More
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provocatively, I shall also suggest they can function like model organisms of-
ten do in the biological sciences, providing a kind of controlled environment
for observations.

My focus here will be on a wide family of logics that are based on model
theory, so in the end, these claims apply equally to model theory itself. I do
not think this makes model theory unique. Virtually all the tools of contem-
porary logic have proved fruitful in studying natural language: model theory,
proof theory, recursion theory, set theory, intensional and extensional logics,
classical and non-classical ones,...But, model theory does offer a particu-
larly important set of applications, so I shall focus on it. At the same time,
model theory offers a particular way of understanding what is basic about
logic. Along the way towards arguing for my thesis about models in science,
I shall also try to clarify the role of model theory in logic. At least, I shall
suggest, it can play distinct roles in each domain. It can offer something like
scientific models when it comes to empirical applications, while at the same
time furthering conceptual analysis of a basic notion of logic.

The plan of the paper is as follows. In section 1, I shall begin with logic
itself. I shall argue that model theory, even some of the complex mathematics
we find in modern model theory, can help us understsand some basic issues
about logic. It can even support a broad conceptual analysis of the nature
of logic. In section 2, I shall turn to applications to natural language; and
briefly, to other aspects of cognition. I shall argue there that model theory
provides tools that function like scientific models for the study of empirical
phenomena. Finally, in section 3, I shall ask what sorts of scientific models
logic and model theory provide. I shall argue that they provide two sorts:
they provide both analogical models, and models that function much the way
model organisms function in the life sciences.

Before proceeding, let me mention some unfortunate terminological prob-
lems. Clearly, the term ‘model” is being used multiple ways. These uses are
well-established, and so it is pointless to try to introduce new terminology.
Sometimes [ shall have to just let context disambiguate. But for the most
part, when I say ‘model’ I mean what model theory—the branch of logic—
has in mind. I shall try to say ‘scientific model’ or ‘model in science’ to
distinguish such models from model theory. Also, for the most part, I shall
discuss a number of logics, and be quite liberal in what I count as a logic.
But at some points, I shall ask about a fundamental philosophical issues of
what really counts as logic, and which, or how many, of the logics mathe-
matics provides are really logic. I shall write ‘LOGIC’ in capital letters to



mark this philosophically fundamental notion (assuming that indeed it is a
coherent and well-defined one). Neither of these notational fixes is elegant,
but they will suffice.

1 Logic and Model Theory

Before getting to empirical applications, I shall consider some ways of think-
ing about logic, and perhaps LOGIC.

What is logic? There are many potential answers to this question. One
will be especially important to empirical applications, but there are others.
Taking inspiration from work of Cook (2002), we can consider severals, op-
tions:

The instrumentalist view of logic: Logic is just mathematics. Like any
mathematical machinery, you can use it however you like. It can be
used in an instrumentalist fashion, to roughly track some phenomena,
perhaps in language or reasoning, but offering no real explanations of
the phenomena in question. Any implications from the mathematical
machinery can be viewed as convenient fictions.

Logic as description: Logic describe what is really going on with the truth
conditions, consequence relations, etc. of various discourses.

Logic as conceptual analysis: There are fundamental facts about conse-
quence and other logical properties. These facts are revealed by concep-
tual analysis, and logic provides that analysis. Pluralists might think
there are many such sets of facts, singularists will hold there is only
one.

Logic as modeling: Logic can provide models (in the sense of scientific
models) that help us understand various phenomena, especially in lan-
guage and reasoning. It can be a fruitful ways to represent and study
these phenomena. But it is one tool among many, and there are many
ways phenomena can be modeled, with different benefits and limits.!

LCooks builds on work of Shapiro (1998), who in turn notes a suggestion of Hodes
(1984). I have modified Cook’s presentation in several ways, but kept to the spirit of his
taxonomy. I added the conceptual analysis option. My statement of the instrumentalist
view is somewhat broader than Cook’s. He has in mind a fairly specific set of applica-



As Cook notes, these positions are extreme, and it is not clear if anyone has
held them in the forms stated. But even if this range of options is something
of a caricature, it offers a useful structure within which to ask very general
questions about logic.

If we assume there is such a thing as LOGIC—a philosophically funda-
mental notion—then it seems to go most naturally with the Logic as concep-
tual analysis option, though perhaps some empiricists might opt for the Logic
as description option. I shall argue that in the end, the Logic as modeling
option is the best one for thinking about empirical applications of logic.

With these options in mind, I shall turn to the question of the relation
of model theory to logic. Model theory as it is done these days includes
a lot of advanced mathematics. It is usually done as a branch of abstract
mathematics, typically within set theory, but with many applications, to
algebra, geometry, and so on. Especially if we are thinking of LOGIC, we
might worry that such mathematics and LOGIC have little to do with each
other. The point is made vividly by Sacks (1972, p. 1):?

Part of the blame belongs to B. Dreben who once asked with
characteristic sweetness: “Does model theory have anything to
do with logic?” It is true that model theory bears a disheartening
resemblance to set theory, a fascinating branch of mathematics
with little to say about fundamental logical questions ...

In contrast, many philosophical logicians find model theory to be essential
to logic, or at least to LOGIC. The point is made vividly by a wonderful quote
from Routley & Meyer (1973, p. 199) via Restall (2000):

Yea, every year or so Anderson and Belnap turned out a new logic,
and they did call it F/, or R, or Ff or P — W, and they beheld
each such logic, and they were called relevant. And these logics
were looked upon with favor by many, for they captureth the
intuitions, but by many they were scorned, in that they hadeth
no semantics.

tions to vagueness (which is the main focus of his paper), while I have a wider range of
applications in mind. One might worry that not any old piece of mathematics is logic. 1
agree, but given the range of different mathematical techniques that do seem to count, I
am avoiding that demarcation issue here.

2This is from the introduction to Sacks’ book Saturated Model Theory, which covers a
great deal of the mathematics of model theory as it was done at the time.



(That is, until Urquhart (1972) provided one.)

I shall assume throughout that giving a semantics for a logic is an exercise
in model theory. Hence, the two views could not be more different. On the
one hand, we question of whether model theory has anything to do with logic;
on the other, we insist that without a model theory a logic is somehow not
good enough.

If we are instrumentalists about logic, of course, there is no issue here.
Any mathematics is fine. Model theory is, so is the proof theory that framed
many relevance logics, and so on. If we think of logic as description, we
might worry more, about whether various pieces of mathematics help with
such descriptions. But the question is most vivid for the Logic as conceptual
analysis view. There, the questions of whether one must have a model theory
as part of one’s conceptual analysis; and if so, what role such mathematics
could play in any conceptual analysis seem urgent.

I shall propose a way of bridging these two opposing views, that will
allow us to see sophisticated mathematics as playing a role in conceptual
analysis, at least a background role. This will show that instrumentalist and
conceptual analysis views of logic can work together.

The key observation is one that Sacks (1972) already made. The quota-
tion above continues:?

But the resemblance is more of manners than of ideas, because
the central notions of model theory are absolute, and absolute-
ness, unlike cardinality, is a logical concept. That is why model
theory does not founder on that rock of undecidability, the gen-
eralized continuum hypothesis, and why the Los conjecture is
decidable. .. Los conjectured and Morley proved that if a count-
able theory is k-categorical for some uncountable , then it is x-
categorical every uncountable k. The property “I"is k-categorical
for every uncountable k” is of course an absolute property of T'.
(Sacks, 1972, pp. 1-2)

Model theory has properties that do lend themselves to the study of funda-
mental logical notions.

Sacks takes an abstract, and somewhat technical, view of this issue, but
the point is quite general. Many model-theoretic notions, starting with
model-theoretically defined consequence relations, definability properties, many

3This passage is also discussed by Kennedy (2015).



model-theoretic properties of theories, and so on, are relevant to how we un-
derstand fundamental aspects of logic, and perhaps even LOGIC. And in-
deed, the way we can find absolute properties in model theory is a good clue
to this fact.

To fix ideas, let us start with a familiar way of thinking about logic that
supports a conceptual analysis view. We take the most fundamental aspect
of logic to be logical consequence, and take the model-theoretic approach
to logical consequence pioneered by Tarski (1935, 1986) to be the core of a
conceptual analysis of logic.

This is sometimes called the ‘semantic conception of logical consequence’,
and it embodies a long-standing tradition of thinking about the nature of
LOGIC (the philosophically fundamental notion), and is well-viewed as a
kind of conceptual analysis of LOGIC. I'll briefly review some of the key
ideas of this view.

LOGIC, according to this view, describes something fundamental: valid
arguments, which are a fundamental constraint on good reasoning. The
tradition from Tarski (1936) places two constraints on LOGIC: necessity and
formality (cf. Beall & Restall, 2009; Etchemendy, 1990; Sher, 1991):

e Necessity: If S is a consequence of a set X of sentences, then the truth
of the members of X necessitates the truth of S.

e Formality: Logical consequence holds ‘in virtue of the forms’ of sen-
tences.

Note, that even before spelling these out further, they are enough to distin-
guish logical consequence from e.g. inductive support.

Articulating these requirements more fully can be done via the notion of
a ‘case’ fron Beall & Restall (2006). Providing a logic can be done by pro-
viding a range of cases of some sort. The range must be sufficient to capture
necessity: preserving truth in all cases must suffice to establish necessity.
Cases also need to support formality, by allowing fixed treatment for logical
constants. Validity of arguments is characterized by what Beall & Restall
(2006) call the generalized Tarski Thesis:

GENERALIZED TARSKI THESIS (GTT): An argument is valid,
if and only if; in every case, in which the premises are true, so is
the conclusion.



Beall and Restall are logical pluralists, and so they subscript valid, and
case, to allow many different instances. But regardless, what we have here
is a fairly common conceptual analysis of logical consequence. This can be
seen as a conceptual analysis of LOGIC. It is one of many contenders, but
will serve our purposes here well as an illustration of a conceptual analysis.

Model theory enters to tell us what cases are. In the tradition of classical
logic, cases are just models in the usual sense from model theory. Beall
and Restall also consider possible worlds, situations, and so on, to give a
wider range of logics. But model theory has the mathematical wherewithal
to capture any of these.

So far, it looks like model theory only relates to the conceptual analysis
of logic, or to LOGIC, in a very modest way. It tells us what cases are, but
that barely scratches the surface of the rich mathematics of model theory.

But this is to underestimate the complexity of the mathematics of these
‘cases’, which is of course model theory. Even if we fix the standard classical
notion of a model, there is a huge range of different ways we can use them as
cases, and they produce different logics. This is the family of model-theoretic
logics as explored e.g. by Barwise & Feferman (1985). Examples include:

e (lassical first-order logic.

Second-order logics of various strengths.

Logics of generalized quantifiers £(Q) for various families of quantifiers

0.

Smaller infinitary logics like L, (with arbitrary conjunctions and dis-
junctions but finitely many quantifiers in any sentence), and its frag-
ments.

L, (with < k-sized conjunctions and disjunctions, and < A-many
quantifiers in any sentence).

We can study the properties of these in depth, including forms of compact-
ness, interpolation, etc. We can sometimes, as with Lindstrém’s theorem
(Lindstrom, 1969), characterize these logics in substantial ways. As Sacks
notes, we find reasonable degrees of absoluteness in many of these cases
(though not all!). We can, of course, find even more options if we depart
from classical models, including many intensional, relevance, and other log-
ics.



We use substantial mathematical resources—substantial parts of the math-
ematical subject of model theory—to formulate and understand these op-
tions. So sophisticated mathematics can play a role in our conceptual anal-
ysis. It can help us undertand a wide range of options for what formally fits
with our conceptual analysis. Of course, this a number of further questions
for our conceptual analysis. Which of these are LOGIC, if there is such a
thing? Can one or many be LOGIC? Are there important properties that
help us decide? I suspect there are. Compactness properties are a good
example. Though I am not sure that every aspect of model theory plays a
role here (would the applications to geometry?), we do see that substantial
mathematics interacts fruitfully with conceptual analysis. Model theory does
have much to do with logic understood as conceptual analysis, and maybe
even has something to do with LOGIC.

We see here ways that two approaches to logic, the Logic as instrumen-
tal and the Logic as conceptual analysis approaches, can fruitfully interact.
Perhaps much model theory in mathematics is done simply as pure math-
ematics, with little more than the instrumentalist view in mind (what else
would mathematicians do than mathematics?). But mathematics can be ap-
plied in many ways, and it turns out that model theory has interesting, and
I think rich, applications to Logic as conceptual analysis.

The application can be seen as follows. The mathematics of model theory
give us many candidate logics. At least to some extent, they meet the condi-
tions conceptual analysis provides. So, they seem to be candidates for being
LOGIC, and we then have to explore, sometimes with real mathematical
sophistication, which candidates are really the right ones.*

Let us call the kinds of logics that we generate this way model-theoretic
logics.® Model-theoretic logics have a home in pure mathematics, which per-
haps may suggest an instrumental view, but they can be part of a conceptual
analysis view as well.

With that, let us ask the next question: what does model theory have to
do with natural language or other empirical phenomena?

4Not every exercise in the mathematics of building models seems to offer the kinds of
conditions our conceptual analysis requires. I am not sure that some models of Lambek
calculi or Linear logics do. But I shall not argue that here.

>This includes the sorts of logics called model-theoretic by Barwise & Feferman (1985),
but is wider, as it also includes intensional logics and many others.



2 Relations to Language (and Cognition)

So far we have focused on foundational or conceptual matter: what is logic,
or even LOGIC, and what role does model theory play in it. I argued that
we can view model theory as having instrumental roots, but that it supports
conceptual analysis views of logic as well. Indeed, these come together in
an interesting way. But I did not consider either Logic as description or
Logic as modeling approaches. Logic as modeling does not seem to have any
place when we address only such conceptual questions. There is no empirical
phenomenon to model. But I shall argue, it is the best option when we
turn to empirical phenomena. I have already argued in effect that Logic as
description is a mistake in other work, that I shall review here. My main
thesis for this section is that when we come to empirical applications, we
should rely on Logic as modeling exclusively.

Let me begin with the Logic as description view. It presupposes that
natural languages, or discourses formed in them, have a logic to begin with.
This is what in earlier work (Glanzberg, 2015, p. 75) I called the Logic in
natural language thesis:

A natural language, as a structure with a syntax and a semantics,
thereby has a logical consequence relation.

I take the Logic as description view to be stronger than the Logic in natural
language thesis. The latter says we can find a logic in natural language. I
take the former to hold that it is THE logic, or perhaps LOGIC.

The Logic in natural language thesis is in effect endorsed by Montague
(1970, p. 222):

There is in my opinion no important theoretical difference be-
tween natural languages and the artificial languages of logicians;
indeed, I consider it possible to comprehend the syntax and se-
mantics of both kinds of languages within a single natural and
mathematically precise theory.

I am not sure if Montague was assuming a broader descriptivist, instrumen-
talist, or conceptual analysis view of his ‘single natural and mathematically
precise theory’, but descriptivists should also endorse Montague’s claim.

61 suspect most researchers working in empirical areas will not be surprised by such
a conclusion. Scientific models are common tools for them, and being told that logic is
one may not be a surprise. But among philosophical logicians, the Logic as modeling idea
from Cook (2002) is indeed surprising and controversial.

9



One of the main claims in my (Glanzberg, 2015) was that the Logic in
natural language thesis is false. If so, this rules out descriptive approaches to
the application of logic to natural language. I argued there that what we find
in natural language is not really logical consequence. Descriptively, natural
language does not hand us a logic. If this is correct, Logic as modeling is
our only option for these applications. But moreover, I shall argue here that
the way of thinking about the relation of logic to language I outlined in that
paper really is an instance of logic as modeling.

I argued for the claim that the Logic in natural language thesis is false
at (perhaps excessive) length already, and I shall not try to repeat the full
arguments here. But to get to the new points I wish to make, it will be
helpful to make reference to the specific arguments from my earlier work. I
presupposed that the conditions of formality and necessity discussed above
are constraints on what counts as logic (and so perhaps engaged in some
conceptual analysis). With that, I gave three distinct arguments.

First was the argument from absolute semantics. As noted by Davidson
(1967) and Lepore (1983), semantics for natural language must be absolute,
in that to give correct and non-vacuous truth conditions for sentences we must
fix the correct reference and satisfaction conditions for their constituents.
This leaves no use for a space of models. We only need real-world reference
and satisfaction. For instance, recall that an atomic sentence F'a will be
assigned arbitrary extensions for F' and a across models. That does not give
any substantial truth conditions. If you want to give the truth conditions of
Sam is happy you need the real-world reference of Sam and the real-world
extension of happy. Hence, what natural language gives us does not satisfy
necessity, and we find no genuine consequence relation.

Second was the argument from lexical entailments. I argued lexical en-
tailments will not count as logical consequences (as they either fail necessity
or formality).

Finally, I offered the argument from logical constants. I argued that there
is no linguistically distinguishing marks of logical constants.

All this made me claim that we do not find any genuine consequence rela-
tions in natural language, and so, we cannot take any plausible consequence
relation to be the one of natural language. Nor can we take the semantics of
natural language to be the semantics that gives any such consequence rela-
tion. The Logic in natural language thesis must be false, and if we assume
some minimal constraints on what counts as logic, so must any descriptive
approach.

10



This was never to say that we cannot find useful clues to logics within
our languages. Historically, we have. But we need to do more than just
describe the semantics of our languages to find them. In Glanzberg (2015)
I argued that we need to go through a substantial three-fold process to get
from a language to a logic. It includes abstraction from absolute semantics
to get an appropriate domain of models or cases. In many situations, we
do this in a specific way. Absolute semantics provides specific meanings
to non-logical expressions. Abstraction allows these to vary, and as has
been much discussed, we also usually allow the domain of quantification
to vary. We also have to identify the logical constants. Natural language
fails to do this, but we must. To achieve formality, we will need to hold
the meanings of the logical constants fixed in abstraction. Abstraction and
identification work together, and doing both typically yields a common post-
Tarskian understanding of a model-theoretic consequence relation.

I argued that this is not sufficient. Another step of idealization, is needed.
Even after we have performed abstraction, we are still going to be stuck with
some idiosyncratic and quirky features of natural language grammar, that
we will not want to contaminate our logic. Rather, we want our formal
languages to display uniform grammatical properties in important logical
categories. So, we must idealize these quirks away. Idealization like this is
familiar from modeling in science.

What can result from this process of abstraction, identification, and ide-
alization? The familiar history suggests that classical logic seems to be one
likely outcome. First, we identify logical constants to be or, and, if, not,
every, some. Then, we use set theory to freely vary extensions of non-logical
terms and predicates. This is easy and natural. But we also do substantial
idealization. For instance, we modestly idealize the meaning of or, and more
substantially the meaning of then to get V and —. We make structural
idealizations as well. For instance, the standard first-order quantifiers depart
from the syntax of natural language, and the scope behavior of quantifiers
in natural language differs from what we have in logic. Historically, these
idealizations were driven by applications to mathematics, as well as reasons
of simplicity and uniformity.”

We might find more than classical first-order logic. For instance, plural
constructions might lead you to second-order quantifiers (Boolos, 1975; Lin-
nebo, 2003; Rayo, 2002; Uzquiano, 2003). The structure of quantified noun

"For a general historical overview of the emergence of first-order logic, see Ewald (2019).
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phrases might lead you to £(Q1,1y), the logic of (conservative) binary quanti-
fiers (Barwise & Cooper, 1981; Keenan & Stavi, 1986). Modals, conditionals,
and tenses can get you to intensional logics. We might also be led to depart
from classical logic in some ways. Presupposition can get you to K3 or even
LP (e.g. Beall & van Fraassen, 2003). Many model-theoretic logics are po-
tential results of the process. Perhaps there are good reasons to rule some
of these examples in or out, but we have prima facie reasons to consider all
of them, if not more. This does not mean any logic will arise by this process
directly. It is hard to see infinitary logics resulting from the process. Rather,
they seem to arise as generalizations once we have a logic in hand.

Now, we can return to logic as modeling. We can observe that any in-
stance of this process describes a modeling exercise, and the results are best
understood as certain kinds of scientific models. As I mentioned, idealization
is a familiar aspect of modeling. Abstraction is a form of generalizing, which
is also an aspect of modeling. Identification is too. You identify things you
are modeling and things you are not, in any instance of modeling. Without
those steps, we do not get a recognizable logic, so getting logic in the way
I described should best be thought of as an exercise in a certain kind of
modeling.

Though I have focused on language, it is worth noting briefly that we
might say similar things about the role of logic in human reasoning. A good
example is the PSYCOP model from Rips (1994). This is a model, based
on a specific (classical) natural deduction system, with a generous rule set.
It is a memory-based model, as it models reasoning as constructing proofs
in working memory. It is part of a larger model, with goal and control
systems. In this case, not surprisingly, Rips extensively tested his model
against subjects judgements of validity for arguments, judgements of validity
of proof steps under timed conditions, and tested failures of reliability for
conditionals and negation, and so on. Logics can provide scientific models in
many forms, applying to language and other aspects of cognition.

So, I claim, when logic is applied to language and cognition, we should
adopt the Logic as modeling approach. We find logics for natural language
by a process of scientific modeling. But if so, what kinds of models do we
get, and what do they tell us about the phenomena? And, returning to one
of our main themes, what is the role of model theory in this kind of scientific
modeling?

One role model theory plays in Logic as modeling is just the same one it
played when we considered conceptual analysis. Model theory can provide us

12



a broad and rich range of model-theoretic logics. These are candidate models,
and understanding them will help us with our modeling exercise. Indeed, the
process I described above is one tailored to produce model-theoretic logics,
and the mathematics of model theory can help us do that, and undertand the
results. So, we can see model theory as providing the mathematical resources
that give us certain kinds of scientific model, and allow us to understand how
they work. Those kinds of models are just the kinds we get by the process I
described above.

The question then becomes, what value do these sorts of models have?
Why model that way? One answer is not surprising. These models help us
understand the behavior of expressions close to logical constants, of course.

Here is one example among many. Generalized quantifier logics,with their
mathematically rich model theory, offer insights into the properties of natural
language quantificational determiners: expressions like most (in languages
that have them?).

Here is a logical property expressible in a logic with generalized quanti-
fiers. We look at @)y, the extension of a generalized quantifier in a model
with domain M. This will be essentially a set of sets. We can then define
such properties as

(1) EXT for type (1) quantifiers: For any A C M C M’, we have
Qum(A) «— Qumr(A).

EXT is a strong form of domain restriction. It is not something we would
find if we just specified the absolute truth conditions for sentences, as it
requires varying domains for each quantifier. We have to engage in the kind of
scientific modeling I just described to find this property. And yet, its analog
for natural language determiners seems to hold. They are highly domain-
restricted, in much the way this property describes. A classic theorem tells
us that EXT plus permutation invariance implies isomorphism invariance
(EXT + PERM implies ISOM). Natural language quantifiers also show strong
permutation invariance. So, we have learned something about our quantifiers,
using our logic, i.e. our scientific model.?

We can keep adding to this list of examples. The entailment properties of
quantifiers has proved useful in understanding the surprising behavior of ex-

81t is unlikely that all languages do. See Bach et al. (1995) and Keenan & Paperno
(2012)

9See Peters & Westerstahl (2006) for more details and references. I have discussed this
kind of use of model theory more in my (Glanzberg, 2014).

13



pressions like any: so called negative polarity items.’® Looking to intensional
systems, we can say the same about modals, conditionals, tenses, and so on.
Generally, we can fruitfully study the properties of logically rich expressions
using the tools of model theory and model-theoretic logic as scientific models,
in much the way I described above. I noted above that absolute semantics
show us that building these models is not the immediate job of specifying
the truth conditions of sentences and their parts, and so is not the most
immediate task for semantics. But it can be useful nonetheless.

This particular sort of scientific model has its limits. That is not a sur-
prise. Any model has limits. Let me mention one. I am skeptical of how
much model-theoretic logics will help with lexical entailments, which is an im-
portant and data-rich area of semantics.!! We can indeed, as Carnap (1952)
and Montague (1973) both noted, sometimes capture lexical entailments as
constraints on spaces of models. These appear as meaning postulates, like
the familiar:

(2) Va(Bachelor(x) <+— [Human(x) A Male(x) A Adult(z)])

The result is a step to partially interpreted languages but their model theory
is also a rich subject (cf. Barwise, 1975).

Since work of Zimmermann (1999), many linguists have been cautious
about meaning postulates, and tend to prefer to re-write these rules as lexical
decomposition rules. More importantly, many cases of lexical entailment do
not indicate this kind of restriction on a space of models.

A good example is the dative alternation and its puzzles.

(3) a. Anne gave Beth the car. (Double Object (DO))
b. Anne gave the car to Beth. (Prepositional Object (PO))

These are near synonyms. But not quite:

(4) a. Anne sent a package to London.
b. # Anne sent London a package.

We also see different entailments:

(5) a. Mary taught John linguistics.
ENTAILS

John learned linguistics.

19See Giannakidou (2011) for an overview.
UFor an interesting discussion of what meanings can be captured with model-theoretic
tools, see Sagi (2018).
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b. Mary taught linguistics to John.
DOES NOT ENTAIL
John learned lingustics.

We have a complicates set of patterns here!

How should we understand them? This remains controversial. But let me
illustrate briefly with one idea. We should look for a rich lexical decomposi-
tion that tracks some conceptual difference that this pattern displays. One
approach posits a polysemy between the DO and PO cases (Kritka, 1999;
Pinker, 1989):12

(6) a. DO: NP; CAUSES NP, TO HAVE NP;
b. PO: NP; CAUSES NP, TO GO TO NP3

These frames show different sorts of meaning: a meaning involving causing
to have, versus a meaning involving causing to go to. The two different
meanings are realized in English with different syntax.

One virtue of this proposal is that it helps explain why we get # London
a package above. This is a DO form, and so requires HAVE. London does
not have a package. It also explains the entailment we noted by assuming
HAVE typically includes mastery. ‘Successful transfer’ is required for HAVE.

So, perhaps this is a good explanation. As I said, it remains controversial.
But it is a plausible exercise in the kind of scientific modeling we might do for
natural language. We have a complex phenomenon, and we build an abstract
model that helps explain what is happening.

But this is not an exercise in logic, or scientific model-building with
model-theoretic logics. Rather, it is an analysis of the components of a verb
frame, which tells us how a class of verbs behave. Perhaps we could do some
logic to understand the components like CAUSE or DO, or with locations,
GO. But that would not give us the insight this theory offers. It offers a
different kind of analysis, not one from logic-like modeling.

So, even when looking at entailments in language, logic as modeling may
not be the most useful approach. Like all scientific models, this sort has
its limits. Model theory and model theoretic logics offer interesting abstract
scientific models of some entailment patterns. These have proved useful for
studying some ‘logical’, mainly functional, expressions. But they do not seem

I2For a critical discussion both of the data and the proposal, see Rappaport Hovav &
Levin (2008).
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of much help for difficult problems like the lexical entailment I illustrated
above,

But this raises a further question. When we can use models to model,
what sorts of models do they provide? And how does they really help us to
learn about phenomena?

3 Learning from Models

I have argued that when applied to empirical phenomena like natural lan-
guage and human reasoning, we can usefully see logics, especially model-
theoretic logics, as offering scientific models. But there are many sorts of
models in science, and we do different things with them and learn from them
differently. I shall conclude by suggesting that logics can work as models of
at least two sorts. They can function as what are called analogical models,
but also in ways similar to model organisms.

The way I described generating a logic starting with a natural language
puts weight on idealization, along with identification and abstraction. This
suggests that perhaps logics function as what are sometimes called idealized
models in science.'® The standard example is the frictionless plane, which
idealizes away friction. Notably, we have surfaces of varying amounts of
friction, and this idealized model simply pushes that to an idealized limit.
As I recall from my college physics class, we use this model to help us work
out basic laws of mechanics.

To some extent, logics can behave like this. A logic of generalized quanti-
fiers idealizes away various features of natural language, including syntax and
scope restrictions on quantifiers, to provide a general picture of what scope
and quantifier meanings look like. We use this to understand the phenomena
in question.'

But this is not quite right. After all, we do not stare at logics of gener-
alized quantifiers and figure out the laws of scope in natural language. We
cannot, as these logics have idealized away what we would need to do so.

13T am not a philosopher of science, and am very much working as an amateur when
it comes to scientific models. As amateurs sometimes do, I am trying to just follow the
experts, in this case with the help of the Stanford Encyclopedia of Philosophy entry on
models in science by Frigg & Hartmann (2009).

14For an extensive overview of scope phenomena in natural language, see Szabolcsi
(2012).
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A better picture comes from what are often called analogical models in
science. The billiard ball model of gases is a standard example. These models
analogically exploit similarities between systems. So, a system of colliding
billiard balls is analogically related to a gas. These models also help us to
find basic, sometimes idealized laws. But they are not simply limits of what
is real. Gases are not made of billiard balls, even in a limit.

I think we rely on such analogical roles when we use logic to model natural
language. Take quantifier scope, a messy phenomenon in natural language.
We understand it best after we abstract away to a logic with quantifiers. We
then look back and say that scope in natural language must be something
like we see there. Not exactly, but by analogy.

My suspicion is that many applications of model theory to natural lan-
guage and cognition are like this. Model-theoretic logics give us idealized
and often analogical models of various aspects of language, or perhaps cogni-
tion. We can use them to try to formulate more accurate hypotheses about
how language really works, and can learn from general comparisons or analo-
gies. Note, for instance, that the idea that possible worlds are like models is
already a clear kind of analogical modeling.

Analogical models are often useful to get inquiry going. But they have
limits, of course. One is that they do not, typically, have parameters we can
manipulate. Many models are systems of equations, or computer simulations,
that have such manipulable parameters. (Basically, constants that can be
adjusted to affect the behavior the model.) This is important, as it allows us
to test models against data, and refine them by adjusting parameters. We
can then use the models to generate new predictions, which are again tested
against data. This cycle allows the building of more refined models, which
help us improve our understanding of some phenomenon and make better
predictions.

No doubt in some cases, logics can be used like this. A clear example is
the PSYCOP model of Rips (1994), which was built to be just such a model.
Perhaps there are others. We might think of the accessibility relation of a
Kripke model as a kind of manipulable parameter, or perhaps the strength
of a logic of generalized quantifiers. Perhaps this is right in some cases,
but in many, I find the comparison strained. It is not clear that we simply
adjust the accessibility relation as a parameter, with a set range of values, in
response to data. We certainly cannot do that with our logics of generalized
quantifiers. At the same time, I think there is a better way to see how these
sorts of tools function as models beyond their analogical roles.
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The range of what counts as models is very large, and I shall leave it to
the philosophers of science to decide whether it forms a homogenous class or
kind. But among what are called models are model organisms, often worms
or mice. I shall suggest that logics often function more like model organisms
than other sorts of models.

Model organisms are often carefully designed, by breeding or genetic en-
gineering. For instance, if you want to study a human disease, you might
design a model organism to simulate relevant aspects of the human. You
can then observe the phenomenon in a controlled environment, typically by
infecting your carefully designed mouse and seeing what happens.!®

Animal models can be changed in the face of data, but in many cases, they
do not have straightforward manipulable parameters. Certainly, when they
are designed, allowing fairly straightforward changes is a valuable feature.
But often when an animal model fails, it is a significant task to build an
improved one.

I think in many applications, logics function surprisingly like animal mod-
els. Take the case of a generalized quantifiers again. A logic of generalized
quantifiers in part, but only in part, reflects the way quantifiers work in nat-
ural language. The same is true of animal models. We can use the logic
as a controlled environment to study the behavior of quantifiers. Drop a
quantifier into it, and we can see a set of entailment patterns, and a number
of other logical properties, like monotonicity properties, definability proper-
ties, EXT mentioned above, and so on. We can watch these behaviors, and
see how that compares to quantifier behavior in natural language. We can
generate predictions from the model. Sometimes, we can change the model
itself. We might restrict ourselves to conservative quantifiers, for instance.
We can sometimes even find a manipulable parameter. Restricting ourselves
to finite models can provide interesting results, especially about discourse
processing. But then, the size of a domain can be manipulated.'6

In practice, I suggest, we use logics to study natural language both like
analogical models, and like model organisms. We can use lots of other
tools, and we do. I have focused on model-theoretic logics, but proof theory
has many applications. So do non-logical methods. Decision theory comes
to mind. So do theories of concepts and categorization. We have lots of

15This is a common technique among biomedical researchers. For an overview, see for
instance Fox et al. (2007).
16See, for instance, results from Keenan & Stavi (1986).
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tools, but model-theoretic logics are among then, and often used as models-
theoretic logics to provide scientific models in these two senses.

I have illustrated specific roles for model theory in both foundational ap-
proaches to logic and to the study of natural language. In both, the rich
mathematics of model theory can be important. I doubt these are the only
roles for model theory in applications, but I think they are central ones.
Model theory provides us a rich stock of model-theoretic logics. In founda-
tional studies, these can be important options for conceptual analysis, and
raise a number of foundational questions about the nature and scope of logic.
Perhaps this might help us to understand the nature of LOGIC. When we
turn to applications to empirical matters like language and cognition, these
logics stand in the relation of models in science to phenomena. Specifically, I
suggest, we use them like analogical models, and sometimes much like model
organisms are used. Such models have valuable, but I think limited appli-
cations, as all good models do. But generally, when applied to language
and cognition, we should think of logic and model theory as much more like
models in science.
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